Investigation of the Role of Single Nucleotide Polymorphisms (SNPs) in Premature Coronary Artery Disease

  • Qurratu Aini Musthafa Department of Biochemistry, Universiti Kebangsaan Malaysia Fakulti Perubatan: Cheras, Kuala Lumpur
  • Zakiah Jubri Department of Biochemistry, Universiti Kebangsaan Malaysia Fakulti Perubatan: Cheras, Kuala Lumpur
  • Mohd Zufri Department of Biochemistry, Universiti Kebangsaan Malaysia Fakulti Perubatan: Cheras, Kuala Lumpur
  • Noor Akmal Shareela Ismail Universiti Kebangsaan Malaysia
Keywords: Premature coronary artery disease, atherosclerosis, single nucleotide polymorphisms, risk allele, GWAS


Premature coronary artery disease is a concerning epidemic around the world. Therefore, there is a need to find useful biomarkers for a diagnostic tool to screen for the disease. This review aims to explore studies utilizing single nucleotide polymorphism (SNPs) to explain the heritable variation of bases in certain population that contribute to premature coronary artery disease. The studies have concluded the changes involved in lipid metabolism, oxidation of lipid and the significance of 9p locus. In recent years, many studies have done to reveal the gene-associated disease. The most robust genetic risk variant for CAD was identified on chromosome 9p21.3. This leads to the tremendous studies to explore the genetic variants underlie in the development of atherogenesis in early-onset CAD. Genome-wide association studies (GWAS) have enabled the discovery of 33 genetic risk variants for CAD by microarrays of SNPs. This includes 23 risk variants with unknown mechanism and only 10 associating with hypertension or lipids. This review will discuss on the association of SNPs studies with lipid metabolism, inflammation and oxidation.


Download data is not yet available.

Author Biography

Noor Akmal Shareela Ismail, Universiti Kebangsaan Malaysia

Senior Lecturer,

Biochemistry Department


Mozaffarian. Heart Disease and Stroke Statistics-2015 Update: A Report From the American Heart Association (vol 131, pg e29, 2015). Circulation. 2015;131:E535-E.

WHO. Global status report on noncommunicable diseases 2014: attaining the nine global noncommunicable diseases targets; a shared responsibility. Geneva: World Health Organization; 2014.

Malaysia MoH. Healths Facts 2014. In: Centre HI, editor.2014.

Franchini M, Peyvandi F, Mannucci PM. The Genetic Basis of Coronary Artery Disease: From Candidate Genes to Whole Genome Analysis. Trends in Cardiovascular Medicine. 2008;18:157-62.

Padmanabhan S, Hastie C, Prabhakaran D, Dominczak AF. Genomic approaches to coronary artery disease. Ind J Med Res. 2010;132:567-78.

Thanassoulis G, O'Donnell CJ. Mendelian randomization: nature's randomized trial in the post-genome era. JAMA. 2009;301:2386-8.

Lloyd-Jones DM, Nam B-H, D'Agostino Sr RB, Levy D, Murabito JM, Wang TJ, et al. Parental cardiovascular disease as a risk factor for cardiovascular disease in middle-aged adults: a prospective study of parents and offspring. JAMA. 2004;291:2204-11.

Collaborative Res Intern Med Public Health. 2013;5:507-16.

Arzamendi D, Benito B, Tizon-Marcos H, Flores J, Tanguay JF, Ly H, et al. Increase in sudden death from coronary artery disease in young adults. Am Heart J. 2011;161:574-80.

Patel JV, Dwivedi S, Hughes EA, Lip GY. Premature coronary artery disease: an inferred cardiovascular variant or a South Asian genetic disorder? Thrombosis And Haemostasis-Stuttgart 2008;99:991.

Yusuf S, Hawken S, unpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. The Lancet. 2004;364:937-52.

Muda Z, Kadir AA, Yusof Z, Yaacob LH. Premature Coronary Artery Disease among Angiographically Proven Atherosclerotic Coronary Artery Disease in North East of Peninsular Malaysia. Int J Collaborative Res Intern Med Public Health. 2013, 5 (7), 507-16.

Snustad DP, Simmons MJ. Principles of Genetics, Binder Ready Version: John Wiley & Sons; 2015.

Roberts R, Stewart AFR. Genes and Coronary Artery Disease: Where Are We? J Am Coll Cardiol. 2012;60:1715-21.

Dandona S, Stewart AFR, Chen L, Williams K, So D, O'Brien E, et al. Gene Dosage of the Common Variant 9p21 Predicts Severity of Coronary Artery Disease. J Am Coll Cardiol. 2010;56:479-86.

Andreassi MG. Metabolic syndrome, diabetes and atherosclerosis: Influence of geneenvironment interaction. Mutat Res Fund Mol Mech Mut. 2009;667:35-43.

Mathieu P, Pibarot P, Despres JP. Metabolic syndrome: the danger signal in atherosclerosis. Vasc Health Risk Manag. 2006;2:285-302.

Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352:1685-95.

Consortium IKC. Large-scale gene-centric analysis identifies novel variants for coronary artery disease. PLoS Genet. 2011;7:e1002260.

Consortium CADG. A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. Nature Genet. 2011;43:339-44.

Consortium CAD, Deloukas P, Kanoni S, Willenborg C, Farrall M, Assimes TL, et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nature Genet. 2013;45:25-33.

Vargas-Alarcon G, Posadas-Romero C, Villarreal-Molina T, Alvarez-Leon E, Angeles J, Vallejo M, et al. Single Nucleotide Polymorphisms within LIPA (Lysosomal Acid Lipase A) Gene Are Associated with Susceptibility to Premature Coronary Artery Disease. A Replication in the Genetic of Atherosclerotic Disease (GEA) Mexican Study. PLoS One. 2013;8.

Kathiresan S. A PCSK9 missense variant associated with a reduced risk of early-onset myocardial infarction. N Engl J Med. 2008;358:2299-300.

Kathiresan S, Willer CJ, Peloso GM, Demissie S, Musunuru K, Schadt EE, et al. Common variants at 30 loci contribute to polygenic dyslipidemia. Nature Genet. 2009;41:56-65.

Guella I, Asselta R, Ardissino D, Merlini PA, Peyvandi F, Kathiresan S, et al. Effects of PCSK9 genetic variants on plasma LDL cholesterol levels and risk of premature myocardial infarction in the Italian population. J Lipid Res. 2010;51:3342-9.

Oram JF, Heinecke JW. ATP-binding cassette transporter A1: a cell cholesterol exporter that protects against cardiovascular disease. Physiol Rev. 2005;85:1343-72.

Cavelier C, Lorenzi I, Rohrer L, von Eckardstein A. Lipid efflux by the ATP-binding cassette transporters ABCA1 and ABCG1. Biochimica et Biophysica Acta. 2006;1761:655-66.

Zwarts KY, Clee SM, Zwinderman AH, Engert JC, Singaraja R, Loubser O, et al. ABCA1 regulatory variants influence coronary artery disease independent of effects on plasma lipid levels. Clin. Genet. 2002;61:115-25.

Kyriakou T, Hodgkinson C, Pontefract DE, Iyengar S, Howell WM, Wong Y-k, et al. Genotypic effect of the? 565C> T polymorphism in the ABCA1 gene promoter on ABCA1 expression and severity of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2005;25:418-23.

Kyriakou T, Pontefract DE, Viturro E, Hodgkinson CP, Laxton RC, Bogari N, et al. Functional polymorphism in ABCA1 influences age of symptom onset in coronary artery disease patients. Hum Mol Gen. 2007;16:1412-22.

Ordovas JM, Robertson R, Cleirigh EN. Gene-gene and gene-environment interactions defining lipid-related traits. Curr Opin Lipidol. 2011;22:129-36.

Corella D, Peloso G, Arnett DK, Demissie S, Cupples LA, Tucker K, et al. APOA2, dietary fat, and body mass index: replication of a gene-diet interaction in 3 independent populations. Arch. Intern. Med. 2009;169:1897-906.

Corella D, Tai ES, Sorli JV, Chew SK, Coltell O, Sotos-Prieto M, et al. Association between the APOA2 promoter polymorphism and body weight in Mediterranean and Asian populations: replication of a gene-saturated fat interaction. Int J Obes (Lond). 2011 May;35(5):666-75. doi: 10.1038/ijo.2010.187. Epub 2010 Oct 26.

Xu S, Cheng J, Li N-h, Chen Y-n, Cai M-y, Tang S-s, et al. The association of APOC4 polymorphisms with premature coronary artery disease in a Chinese Han population. Lipids Health Dis. 2015;14:1.

Yaron G, Brill A, Dashevsky O, Yosef?Levi IM, Grad E, Danenberg HD, et al. C?reactive protein promotes platelet adhesion to endothelial cells: a potential pathway in atherothrombosis. Br J Haematol. 2006;134:426-31.

Pasceri V, Willerson JT, Yeh ET. Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circ. 2000;102:2165-8.

Rovin BH, Lu L, Saxena R. A novel polymorphism in the MCP-1 gene regulatory region that influences MCP-1 expression. Biochem. Biophys. Res. Commun. 1999;259:344-8.

Szalai C, Duba J, Prohaszka Z, Kalina A, Szabo T, Nagy B, et al. Involvement of polymorphisms in the chemokine system in the susceptibility for coronary artery disease (CAD). Coincidence of elevated Lp(a) and MCP-1 -2518 G/G genotype in CAD patients. Atherosclerosis. 2001;158:233-9.

Wang Y, Zhang W, Li S, Song W, Chen J, Hui R. Genetic variants of the monocyte chemoattractant protein-1 gene and its receptor CCR2 and risk of coronary artery disease: a meta-analysis. Atherosclerosis. 2011;219:224-30.

Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat. Rev. Immunol. 2011;11:762-74.

Gilbert J, Lekstrom-Himes J, Donaldson D, Lee Y, Hu MX, Xu J, et al. Effect of CC Chemokine Receptor 2 CCR2 Blockade on Serum C-Reactive Protein in Individuals at Atherosclerotic Risk and With a Single Nucleotide Polymorphism of the Monocyte Chemoattractant Protein-1 Promoter Region. Am J Cardiol. 2011;107:906-11.

Chen Z, Zhang LZ, Ma GS, Wang JH, Zhang XL, Qian Q. Monocyte chemoattractant protein-1-2518 G/A polymorphism, plasma levels, and premature stable coronary artery disease. Mol Biol Rep. 2010;37:7-12.

Cam SF, Sekuri C, Sagcan A, Ercan E, Tengiz I, Alioglu E, et al. Effect of monocyte chemoattractant protein-1 (MCP-1) gene polymorphism in Turkish patients with premature coronary artery disease. Scand J Clin Lab Invest. 2008;68:801-5.

Abd El-Aziz TA, Mohamed RH. Human C-reactive protein gene polymorphism and metabolic syndrome are associated with premature coronary artery disease. Gene. 2013;532:216-21.

Dai DF, Chiang FT, Lin JL, Huang LY, Chen CL, Chang CJ, et al. Human C-reactive protein (CRP) gene 1059G>C polymorphism is associated with plasma CRP concentration in patients receiving coronary angiography. J Formos Med Assoc. 2007;106:347-54.

Grammer TB, Marz W, Renner W, Bohm BO, Hoffmann MM. C-reactive protein genotypes associated with circulating C-reactive protein but not with angiographic coronary artery disease: the LURIC study. Eur Heart J. 2009;30:170-82.

Kaur R, Matharoo K, Sharma R, Bhanwer AJS. C-reactive protein + 1059 G>C polymorphism in type 2 diabetes and coronary artery disease patients. Meta Gene. 2013;1:82-92.

Paik JK, Kim OY, Koh SJ, Jang Y, Chae JS, Kim JY, et al. Additive effect of interleukin-6 and C-reactive protein (CRP) single nucleotide polymorphism on serum CRP concentration and other cardiovascular risk factors. Clin. Chim. Acta. 2007;380:68-74.

Maitra A, Shanker J, Dash D, John S, Sannappa PR, Rao VS, et al. Polymorphisms in the IL6 gene in Asian Indian families with premature coronary artery disease - J Thromb Haemost. 2008;99:944-50.

Phulukdaree A, Khan S, Ramkaran P, Govender R, Moodley D, Chuturgoon AA. The interleukin-6 -147 g/c polymorphism is associated with increased risk of coronary artery disease in young South African Indian men. Metab Syndr Relat Disord. 2013;11:205-9.

Satti HS, Hussain S, Javed Q. Association of Interleukin-6 Gene Promoter Polymorphism with Coronary Artery Disease in Pakistani Families. Scientific World 2013;2013:6.

Ghazouani L, Abboud N, Ben Hadj Khalifa S, Added F, Ben Khalfallah A, Nsiri B, et al. -174G>C interleukin-6 gene polymorphism in Tunisian patients with coronary artery disease. Ann. Saudi Med. 2011;31:40-4.

Ghazouani L, Ben Hadj Khalifa S, Abboud N, Ben Hamda K, Ben Khalfallah A, Brahim N, et al. TNF-alpha -308G>A and IL-6 -174G>C polymorphisms in Tunisian patients with coronary artery disease. Clin Biochem. 2010;43:1085-9.

Kandil MH, Magour GM, khalil GI, Maharem DA, Nomair AM. Possible association of interleukin-1beta (-511C/T) and interleukin-6 (-174G/C) gene polymorphisms with atherosclerosis in end stage renal disease Egyptian patients on maintenance haemodialysis. Egyptian J Med Hum Genet. 2013;14:267-75.

Humphries SE, Luong LA, Ogg MS, Hawe E, Miller GJ. The interleukin-6 -174 G/C promoter polymorphism is associated with risk of coronary heart disease and systolic blood pressure in healthy men. Eur Heart J. 2001;22:2243-52.

Blankenberg S, Barbaux S, Tiret L. Adhesion molecules and atherosclerosis. Atherosclerosis. 2003;170:191-203.

Romano M, Sironi M, Toniatti C, Polentarutti N, Fruscella P, Ghezzi P, et al. Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity. 1997;6:315-25.

Kuo LT, Yang NI, Cherng WJ, Verma S, Hung MJ, Wang SY, et al. Serum interleukin-6 levels, not genotype, correlate with coronary plaque complexity. Int Heart J. 2008;49:391-402.

Yue C, Wang M, Ding B, Wang W, Fu S, Zhou D, et al. Polymorphism of the pre-miR-146a is associated with risk of cervical cancer in a Chinese population. Gynecol. Oncol. 2011;122:33-7.

Ramkaran P, Khan S, Phulukdaree A, Moodley D, Chuturgoon AA. miR-146a Polymorphism Influences Levels of miR-146a, IRAK-1, and TRAF-6 in Young Patients with Coronary Artery Disease. Cell Biochem. Biophys. 2014;68:259-66.

Moncada S, Higgs A. The L-Arginine-Nitric Oxide Pathway. N Engl J Med. 1993;329:2002-12.

Colomba D, Duro G, Corrao S, Argano C, Di Chiara T, Nuzzo D, et al. Endothelial nitric oxide synthase gene polymorphisms and cardiovascular damage in hypertensive subjects: an Italian case-control study. Immun Ageing. 2008;5:4.

Janssens SP, Shimouchi A, Quertermous T, Bloch DB, Bloch KD. Cloning and expression of a cDNA encoding human endothelium-derived relaxing factor/nitric oxide synthase. J. Biol. Chem. 1992;267:14519-22.

Colombo MG, Paradossi U, Andreassi MG, Botto N, Manfredi S, Masetti S, et al. Endothelial Nitric Oxide Synthase Gene Polymorphisms and Risk of Coronary Artery Disease. Clin Chem. 2003;49:389-95.

Gluba A, Banach M, Rysz J, Piotrowski G, Fendler W, Pietrucha T. Is polymorphism within eNOS gene associated with the late onset of myocardial infarction? A pilot study. Angiology. 2009;60:588-95.

Isordia-Salas I, Leanos-Miranda A, Borrayo-Sanchez G. The Glu298ASP polymorphism of the endothelial nitric oxide synthase gene is associated with premature ST elevation myocardial infarction in Mexican population. Clin Chim Acta. 2010;411:553-7.

Spence MS, McGlinchey PG, Patterson CC, Allen AR, Murphy G, Bayraktutan U, et al. Endothelial nitric oxide synthase gene polymorphism and ischemic heart disease. Am Heart J. 2004;148:847-51.

Cam SF, Sekuri C, Tengiz I, Ercan E, Sagcan A, Akin M, et al. The G894T polymorphism on endothelial nitric oxide synthase gene is associated with premature coronary artery disease in a Turkish population. Thromb Res. 2005;116:287-92.

Zigra AM, Rallidis LS, Anastasiou G, Merkouri E, Gialeraki A. eNOS gene variants and the risk of premature myocardial infarction. Dis Markers. 2013;34:431-6.

Kim IJ, Bae J, Lim SW, Cha DH, Cho HJ, Kim S, et al. Influence of endothelial nitric oxide synthase gene polymorphisms (-786T>C, 4a4b, 894G>T) in Korean patients with coronary artery disease. Thromb Res. 2007;119:579-85.

Mackness MI, Arrol S, Durrington PN. Paraoxonase prevents accumulation of lipoperoxides in low-density lipoprotein. FEBS letters.1991;286:152-4.

Otocka-Kmiecik A, Orlowska-Majdak M. The role of genetic (PON1 polymorphism) and environmental factors, especially physical activity, in antioxidant function of paraoxonase. Postepy Hig Med Dosw 2009;63:668-77.

Fortunato G, Rubba P, Panico S, Trono D, Tinto N, Mazzaccara C, et al. A paraoxonase gene polymorphism, PON 1 (55), as an independent risk factor for increased carotid intima-media thickness in middle-aged women. Atherosclerosis. 2003;167:141-8.

Watzinger N, Schmidt H, Schumacher M, Schmidt R, Eber B, Fruhwald FM, et al. Human paraoxonase 1 gene polymorphisms and the risk of coronary heart disease: a community-based study. Cardiology. 2002;98:116-22.

Bhattacharyya T, Nicholls SJ, Topol EJ, et al. RElationship of paraoxonase 1 (pon1) gene polymorphisms and functional activity with systemic oxidative stress and cardiovascular risk. JAMA. 2008;299:1265-76.

Balcerzyk A, Zak I, Krauze J. Synergistic Effects between Q192R Polymorphism of Paraoxonase 1 Gene and Some Conventional Risk Factors in Premature Coronary Artery Disease. Arch Med Res. 2007;38:545-50.

Morray B, Goldenberg I, Moss AJ, Zareba W, Ryan D, McNitt S, et al. Polymorphisms in the Paraoxonase and Endothelial Nitric Oxide Synthase Genes and the Risk of Early-Onset Myocardial Infarction. Am J Cardiol. 2007;99:1100-5.

Chan K, Motterle A, Laxton RC, Ye S. Common variant on chromosome 9p21 predicts severity of coronary artery disease. J Am Coll Cardiol. 2011;57:1497-8; author reply 8-9.

Hinohara K, Nakajima T, Takahashi M, Hohda S, Sasaoka T, Nakahara K-i, et al. Replication of the association between a chromosome 9p21 polymorphism and coronary artery disease in Japanese and Korean populations. J Hum Genet. 2008;53:357-9.

Patel RS, Su S, Neeland IJ, Ahuja A, Veledar E, Zhao J, et al. The chromosome 9p21 risk locus is associated with angiographic severity and progression of coronary artery disease. Eur Heart J. 2010;31:3017-23.

Zhou LT, Qin L, Zheng DC, Song ZK, Ye L. Meta-analysis of genetic association of chromosome 9p21 with early-onset coronary artery disease. Gene. 2012;510:185-8.

Abdullah KG, Li L, Shen GQ, Hu Y, Yang Y, MacKinlay KG, et al. Four SNPS on chromosome 9p21 confer risk to premature, familial CAD and MI in an American Caucasian population (GeneQuest). Ann Hum Genet. 2008;72:654-7.

Broadbent HM, Peden JF, Lorkowski S, Goel A, Ongen H, Green F, et al. Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked SNPs in the ANRIL locus on chromosome 9p. Hum Mol Genet. 2008;17:806-14.

Maitra A, Dash D, John S, Sannappa PR, Das AP, Shanker J, et al. A common variant in chromosome 9p21 associated with coronary artery disease in Asian Indians. J Genet. 2009;88:113-8.

Jarinova O, Stewart AF, Roberts R, Wells G, Lau P, Naing T, et al. Functional analysis of the chromosome 9p21. 3 coronary artery disease risk locus. Arterioscler Thromb Vasc Biol. 2009;29:1671-7.

Gong L, Chen J, Lu J, Fan L, Huang J, Zhang Y, et al. The 9p21 Locus Is Associated with Coronary Artery Disease and Cardiovascular Events in the Presence (but Not in the Absence) of Coronary Calcification. PLoS ONE. 2014;9:e94823.

O'Donnell CJ, Kavousi M, Smith AV, Kardia SLR, Feitosa MF, Hwang SJ, et al. Genome-Wide Association Study for Coronary Artery Calcification With Follow-Up in Myocardial Infarction. Circulation. 2011;124:2855-U255.

Musunuru K, Post WS, Herzog W, Shen H, O'Connell JR, McArdle PF, et al. Association of Single Nucleotide Polymorphisms on Chromosome 9p21. 3 With Platelet Reactivity A Potential Mechanism for Increased Vascular Disease. Circ Cardio Genet. 2010;3:445-53.

Kim DS, Smith JA, Bielak LF, Wu C-Y, Sun YV, Sheedy PF, et al. The relationship between diastolic blood pressure and coronary artery calcification is dependent on single nucleotide polymorphisms on chromosome 9p21. 3. BMC Med Genet. 2014;15:1.

Review Article